Bifurcations of rotating waves in rotating spherical shell convection.
نویسندگان
چکیده
The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.
منابع مشابه
Multistability in rotating spherical shell convection.
The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modul...
متن کاملContinuation and stability of convective modulated rotating waves in spherical shells.
Modulated rotating waves (MRW), bifurcated from the thermal-Rossby waves that arise at the onset of convection of a fluid contained in a rotating spherical shell, and their stability, are studied. For this purpose, Newton-Krylov continuation techniques are applied. Nonslip boundary conditions, an Ekman number E=10^{-4}, and a low Prandtl number fluid Pr=0.1 in a moderately thick shell of radius...
متن کاملComputation of azimuthal waves and their stability in thermal convection in rotating spherical shells with application to the study of a double-Hopf bifurcation
A methodology to compute azimuthal waves, appearing in thermal convection of a pure fluid contained in a rotating spherical shell, and to study their stability is presented. It is based on continuation, Newton-Krylov, and Arnoldi methods. An application to the study of a double-Hopf bifurcation of the basic state is shown for Ekman and Prandtl numbers E = 10−4 and σ = 0.1, respectively, radius ...
متن کاملHysteresis in a Rotating Differentially Heated Spherical Shell of Boussinesq Fluid
A mathematical model of convection of a Boussinesq fluid in a rotating spherical shell is analyzed using numerical computations guided by bifurcation theory. The fluid is differentially heated on its inner spherical surface, with the temperature increasing from both poles to a maximum at the equator. The model is assumed to be both rotationally symmetric about the polar axis and reflectionally ...
متن کاملOscillatory Convection in Rotating Spherical Shells: Low Prandtl Number and Non-Slip Boundary Conditions
A five-degree model, which reproduces faithfully the sequence of bifurcations and the type of solutions found through numerical simulations of the three-dimensional Boussinesq thermal convection equations in rotating spherical shells with fixed azimuthal symmetry, is derived. A low Prandtl number fluid of σ = 0.1 subject to radial gravity, filling a shell of radius ratio η = 0.35, differentiall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2015